
 Accepted: 01-04-2022 | Received in revised: 25-04-2022 | Published: 29-04-2022

322

Accredited Ranking SINTA 2
Decree of the Director General of Higher Education, Research, and Technology, No. 158/E/KPT/2021

Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026

Published online on: http://jurnal.iaii.or.id

JURNAL RESTI

(Rekayasa Sistem dan Teknologi Informasi)

 Vol. 6 No. 2 (2022) 322 - 329 ISSN Media Electronic: 2580-0760

Model-Based Feature Selection for Developing Network Attack Detection

and Alerting System

Yuri Prihantono1, Kalamullah Ramli2
1,2Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia

1yuri.prihantono@ui.ac.id, 2kalamullah.ramli@ui.ac.id

Abstract

The use of the Intrusion Detection Systems (IDS) still has unresolved problems, namely the lack of accuracy in attack detection,

resulting in false-positive problems and many false alarms. Machine learning is one way that is often utilized to overcome
challenges that arise during the implementation of IDS.. We present a system that uses a machine learning approach to detect
network attacks and send attack alerts in this study. The CSE-CICIDS2018 Dataset and Model-Based Feature Selection
technique are used to assess the performance of eight classifier algorithms in identifying network attacks in order to determine
the best algorithm. The resulting XGBoost Model is chosen as the model that provides the highest performance results in this
comparison of machine learning models, with an accuracy rate of 99 percent for two-class classification and 98.4 percent for
multi-class classification.

Keywords: Machine Learning, Feature Selection, IDS, Snort, ELK Stack

1. Introduction

Intrusion Detection System (IDS) is a security

perimeter that monitor and analyze activities on

computers and networks to detect anomalies or attacks

[1]. For more than 20 years, several detection

approaches have been developed, but there are still two

fundamental difficulties that have not been fully solved:

the quantity and quality of output (alarms or alerts) from

IDS [2]. When it comes to the quantity of alerts, the

problem is that the IDS frequently creates too many,

which overwhelms the user. As a result, many alarms

are unmanageable by the analyst/operator, resulting in
the IDS not being used to its full potential. Then, in

terms of alarm quality will decrease because normal

network behavior continues to change and new attacks

also keep appearing, as a result, IDS will lose alarms on

actual attacks and report too many false alarms in the

normal behavior [2], [3].

Machine learning is one way that is often utilized to

overcome challenges that arise during the

implementation of IDS. Several machine learning

implementations on IDS were performed in previous

studies to acquire the highest accuracy value on IDS.
The performance of machine learning algorithms to

predict attacks has been enhanced by using several

techniques including dataset selection, feature

selection, parameter optimization, and various other

techniques.

Research conducted by Bisyron Wahyudi, et al.

produces an intrusion detection model that includes a

machine learning approach and is implemented in a real

network. They experimented with feature selection

using a dataset from KDD. The testing findings

produced the best classification accuracy without

integrating the content features of KDD, and the

developed model may operate well in a real network.

Experiments on test data reveal that the SVM technique

delivers the greatest results, with a 93.4 percent
accuracy rate for two-class classification (normal and

attack) and 86.8% for multi-class classification [4].

In other studies, Qusyairi Ridho et al. built the ensemble

model with the CSE-CICIDS2018 dataset, decision

trees, logistic regression, and gradient boosting

selecting 23 of the 80 original dataset features using

Spearman's rank correlation. The model they proposed

has a final accuracy of 98.8% and a relatively low

detection time [5].

Then, Syed Ali Raza Shah et al. also did a feasibility

analysis of a machine learning technique that may be
applied on Snort IDS by evaluating three different

datasets using Weka. The best method is SVM, which

 Yuri Prihantono, Kalamullah Ramli

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 2 (2022)

DOI: https://doi.org/10.29207/resti.v6i2.3989

Creative Commons Attribution 4.0 International License (CC BY 4.0)

323

is followed by Decision Tree and Fuzzy logic. Later, a

firefly and ACO-enhanced version of the SVM

ensemble was implemented [6].

In this study, we conducted research to develop a

Network Attack Detection and Alerting System by

applying a machine learning approach to the system

being built. In developing this system, we use various

software, namely Snort IDS, Kafka, Elasticsearch

Logstash Kibana (ELK Stack), ElastAlert, and

Telegram. Each software has its function in developing
the system proposed in this study. Snort is one of the

IDS tools that serve to detect network attacks [7], by

reading network packets, analyzing traffic with a

predefined rule set, and generating alerts if there are

matching rules [8]. This study uses Snort as an IDS tool

because it is very easy to implement, and the ruleset can

be customized as needed[9]. Apache Kafka is a

platform messaging system that allows the consumption

of large amounts of data or logs by applications [10]

[11]. This study uses Apache Kafka as a messaging

system to distribute logs generated by Snort, because of
the scalability, high-volume, reliability, data

transformations, and low latency [12]. ELK Stack is a

combination of three applications i.e., Elasticsearch,

Logstash, and Kibana that have their respective

functions [13]. Elasticsearch is responsible for storing

and collecting information centrally so that it can get the

expected analysis results. Logstash is responsible for

collecting all unstructured information and converting

it into a structured format, and Kibana is a graphical

interface (GUI) that ELK Stack users use to analyze

logs[14]. This study uses ELK Stack as a Log

Management System platform because ELK Stack is
the most effective log monitoring tool [14] and it is an

open system that can be the best and fast solution for

developing a log analysis platform[15]. ElastAlert is a

framework used to generate alerts obtained from

Elasticsearch data. ElastAlert works with Elasticsearch

with two-component types, namely rule types, and

alerts. When the rule matches, the alert will be triggered

[16]. Telegram is in charge of receiving alerts sent via

the ElastAlert Framework. The basic considerations for

using Telegram as a medium for sending alerts include

security and convenience. In terms of security, based on
research conducted by J. Botha et. al shows that

Telegram is one of the Chat Applications that prioritizes

Security and Privacy [17], and in terms of convenience,

based on research conducted by I Made Ari Sulistya et.

al, Telegram provides an API (Application Program

Interface) that allows developers to create applications

that are integrated with Telegram Messenger using Bots

[8].

This study aims to develop a machine learning-based

network attack detection and alerting system. In order

to get a model that has the best performance to be

applied to the system being built, we compare the
performance of the eight selected machine learning

algorithms. The dataset used in the learning process is

the CSE-CICIDS2018 dataset, with the consideration

that the dataset has comprehensive data and can

represent network conditions in the real world [18],

[19]. The application of the Model-Based Feature

Selection method is also carried out to select important

features according to the specified threshold parameter

[20]. Feature selection is an important factor in

improving machine learning model performance

because it can remove unnecessary features, make the
model clearer to understand, and reduce training and

testing time [21]. The results of this study are expected

to be a solution to overcome the problem of false

positives and the number of false alarms on the IDS.

2. Research Methods

The methodology we use to conduct this research

includes literature study related to previous research,

dataset selection, feature selection, performance

measure, machine learning model development, and

architectural design for Network Attack Detection and

Alerting System development.

2.1 Dataset Selection

Based on a survey conducted by [18], datasets are

indispensable in conducting training and evaluating

IDS performance. The dataset represents normal

conditions and attacks in the real world. In the training

and testing of IDS machine learning, a broad range of

publically available datasets are used. To develop an

effective machine learning model performance, the

dataset must have adequate and useful information. The

quality and quantity of datasets have a substantial

impact on the accuracy of IDS, hence choosing an

appropriate dataset is an important and unavoidable
component of the process [22]. Maxime Labonne used

the NSL-KDD, KDD Cup 99, CICIDS2017, and CSE-

CICIDS2018 datasets for his research [19]. According

to the findings of this study, CICIDS2017 has a more

reliable dataset for measuring IDS performance than

KDD Cup 99 and NSL-KDD, while CSE-CICIDS2018

has a more comprehensive dataset than CICIDS2017.

The findings of this research were considered when

CSE-CICIDS2018 was chosen as the dataset for our

research.

2.2 Feature Selection

Datasets with a lot of features will increase the

computational complexity, requiring more resources

and time to analyze. The feature selection technique is

one method used by researchers to address this issue

[23]. Feature selection is an important factor in

improving the performance of machine learning models

because it can eliminate unimportant features, making

the model clearer to comprehend and reducing training

and testing time [21]. Feature selection approaches are

commonly used to increase classifier algorithm

 Yuri Prihantono, Kalamullah Ramli

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 2 (2022)

DOI: https://doi.org/10.29207/resti.v6i2.3989

Creative Commons Attribution 4.0 International License (CC BY 4.0)

324

accuracy, lessen the influence of the "curse of

dimensionality," and improve machine learning

prediction performance by choosing the best ones from

a larger set of features [24].

2.3 Performance Measure

The confusion matrix is commonly used in evaluating

the performance of the developed learning algorithms.

According to [25], for binary classification, a 2x2

matrix with actual class and prediction class is

described in Figure 1.

Figure 1. Confusion Matrix

From Figure 1, in determining the classification there

are formulas used [4], [25], [26], including:

1) True Positive (TP): The positive value that is

predicted to be correct, i.e., the Actual Class and

Predictive Class values are both positive.

2) True Negative (TN): The predicted negative values,

i.e., the Actual Class and Predictive Class values are

both negative.

3) False Positive (FP): The positive result that is
incorrectly predicted, i.e., the Actual Class value is

negative while the Predictive Class value is positive.

4) False Negative (FN): The negative value that is

incorrectly predicted, i.e., the Actual Class value is

positive while the Predictive Class value is negative.

In the case of IDS, we can assume positive means an

attack occurred, while negative means no attack. The

metrics derived from the confusion-matrix table above

[4], [25] are explained as follows:

1) Accuracy: The most intuitive performance metric is

the ratio of predicted right observations to total

observations, which can be calculated using the

formula 1:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1)

2) Recall: The predicted negative values, i.e., the
Actual Class and Predictive Class values are both

negative, as the following formula 2:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑃
=

𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2)

3) Precision: The positive result that is incorrectly

predicted, i.e., the Actual Class value is negative

while the Predictive Class value is positive, as the

following formula 3:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑃′
=

𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3)

4) F1-Score: The negative value that is incorrectly

predicted, i.e., the Actual Class value is positive

while the Predictive Class value is negative, as the

following formula 4:

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
=

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 (4)

2.4. Model Development

Algorithm selection is required for implementing

Machine Learning-based IDS. Algorithms such as
Decision Tree, Random Forest, SVM, and others can be

utilized [27]. Some of these algorithms have their

respective advantages and disadvantages, so research is

needed to get a model that has the best performance

[28]. The machine learning model development process

that we did is represented in Figure 2.

Figure 2. Machine Learning Model Development

The steps of model development in our research are as

follows:

Step 1, Data Preprocessing: clean-up, split, and dataset

analysis.

Step 2, Feature Selection Selection of feature subsets

from the dataset to be implemented in machine learning

modeling.

Step 3, Model Selection: The selection of the model that

has the best algorithm performance, the stages include

the following:

Stage 1, Two-class Model: two-class classification is

used to train and test datasets;

 Yuri Prihantono, Kalamullah Ramli

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 2 (2022)

DOI: https://doi.org/10.29207/resti.v6i2.3989

Creative Commons Attribution 4.0 International License (CC BY 4.0)

325

Stage 2, Multi-class Model: multi-class

classification is used to train and test datasets;

Stage 3, Result Comparison: compare algorithm

performance to choose the best machine learning

model;

Stage 4, Model Selected: the best model from the

Result Comparison is selected.

2.4. System Architecture Design

The next step is to implement the model into the

Network Attack Detection and Alerting System
architecture. In designing this architecture, we utilize

some software, including Snort IDS, Apache Kafka,

ELK Stack, ElastAlert, and Telegram. The software

were combined to design the architecture of the

Network Attack Detection and Alerting System as

shown in Figure 3.

Figure 3. Architectural Design Development of Network Attack

Detection and Alerting Systems

The following steps in the intrusion detection

simulation are based on the Network Attack Detection
and Alerting System Architecture:

Step 1, Capture/sniff network traffic from the

host/server and capture the log events as pcap files.

Step 2, Extract network features from the pcap file in

the CSE-CICIDS2018 dataset format using

CICFlowMeter[29].

Step 3, Predict the intrusion detection findings using the

Final Machine Learning Model obtained from Model

Development.

Step 4, Send the prediction results to Apache Kafka

using Filebeat. Filebeat is a beat shipper used to send
log files [30].

Step 5, Apache Kafka distributes logs sent from

Filebeat to the Log Management System.

Step 6, Log Management System (ELK Stack) performs

network traffic classification on logs received as normal

or attack and displays the results.

Step 7, ElastAlert sends logs with attack classifications

to Telegram using the ElastAlert framework.

3. Results and Discussions

3.1 Data Prepocessing

The CSE-CICIDS2018 dataset must be cleaned before

it can be utilized for machine learning algorithm

analysis and training. The following steps were applied

to perform a clean-up of the dataset [31]:

Step 1, Remove duplicate headers from the dataset that

appear as rows.

Step 2, Infinity and inf values are substituted for each

other.

Step 3, Remove whitespaces and non-word characters

from the column's name.

We analyzed the CSE-CICIDS2018 dataset after

cleaning it up by classifying traffic into two groups,

benign/normal and attack, as shown in Table 1, as well

as classifying traffic into the attack type based on the

attack label, as shown in Table 2.

Table 1. Benign and Attack Numbers and Percentages of CSE-

CICIDS2018 Dataset

Label Number Percentage

Benign 13,484,708 83.07%

Attack 2,748,235 16.93%

Total 16,232,943

Table 2. Attack Type and Percentages of CSE-CICIDS2018 Dataset

Label Number Percentage

Benign 13484708 83.0700%

DDOS attack-HOIC 686012 4.2260%

DDoS attacks-LOIC-HTTP 576191 3.5495%

DoS attacks-Hulk 461912 2.8455%

Bot 286191 1.7630%

FTP-BruteForce 193360 1.1912%

SSH-Bruteforce 187589 1.1556%

Infiltration 161934 0.9976%

DoS attacks-SlowHTTPTest 139890 0.8618%

DoS attacks-GoldenEye 41508 0.2557%

DoS attacks-Slowloris 10990 0.0677%

DDOS attack-LOIC-UDP 1730 0.0107%

Brute Force –Web 611 0.0038%

Brute Force -XSS 230 0.0014%

SQL Injection 87 0.0005%

3.2 Model-Based Feature Selection

Model-Based Feature Selection evaluates all features at

once, to identify relationships [32]. At this stage, the

feature selection steps carried out include the following:

Step 1, Remove Constant Features: Constant Feature is

a feature that displays the same value, one value for all

dataset observations. This feature does not provide

information that would allow machine learning models

to distinguish or predict targets. Removing Constant

 Yuri Prihantono, Kalamullah Ramli

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 2 (2022)

DOI: https://doi.org/10.29207/resti.v6i2.3989

Creative Commons Attribution 4.0 International License (CC BY 4.0)

326

Features is done by removing zero-variance features or

removing features that have a standard deviation of 0

[33].

Step 2, Remove Quasi-Constant Features: Quasi-

Constant Feature is a feature that displays the same

value for most of the dataset observations. In general,

this feature provides very little information that allows

machine learning models to distinguish or predict

targets. Removing Quasi-Constant Features is done by

removing low-variance features or removing features

that have a VarianceThreshold of 0.01 [33]

Step 3, Spearman’s Rank: The Spearman Correlation

can be used to determine the correlation between

features. The Spearman Correlation scale ranges from -

1 to +1, where 0 indicates no correlation, and the

correlation gets stronger as it approaches the absolute

value of 1 [34]. To identify correlations between

features, in implementing Spearman's Rank

Correlation, it is necessary to select the appropriate

threshold. Table 3 shows the interpretation of the

Correlation Coefficient of absolute quantities that can
be used as a reference for determining the threshold

[34].

Table 3. Absolute Magnitude of The Observed Correlation

Coefficient and Its Interpretations

Absolute Magnitude Interpretation

0.00-0.10 Negligible correlation

0.10-0.39 Low correlation

0.40-0.69 Medium correlation

0.70-0.89 High correlation

0.90-1.00 Very high correlation

At this stage, features that have a very high correlation

with each other will be removed, because these features

will not provide predictions but only cause noise [31].

Based on the interpretation obtained from Table 3, this

study uses a threshold value of 1 to identify features that

have a very high correlation. Figure 4 provides a

heatmap that visualizes the correlation between distinct

pairs of features after deleting the very highly correlated

features. Figure 4 shows that feature pairs with a higher
correlation are represented by a darker color spectrum,

whereas feature pairs with a lower correlation are

represented by a lighter color spectrum.

Step 4, Feature Selection using SelectFromModel:

SelectFromModel is a feature selection method that

removes features if the relevant coefficients or

important features are less than the parameter threshold

[20]. This strategy is applied to estimators with

significant characteristics or coefficients [21]. Eight

classifier algorithms are implemented as estimators in

this method, including XGBoost, Random Forest, Extra
Trees, Gradient Boosting, Decision Tree, AdaBoost,

Logistic Regression, and Stochastic Gradient Descent

(SGD). The eight classifier algorithms are implemented

as models in feature selection using default parameters.

Table 4 shows the selected features from the application

of Model-Based Feature Selection.

Figure 4. Correlation Heatmap after the removal of very

highly correlated features

Table 4. Selected Features of Several Classifier Algorithms

Estimator/Classifier Algorithm Remained/Selected Features

XGBoost totlen_fwd_pkts

fwd_pkt_len_mean

flow_pkts_s

fwd_iat_tot

init_fwd_win_byts

init_bwd_win_byts

fwd_seg_size_min

Random Forest flow_duration

totlen_fwd_pkts

fwd_pkt_len_mean

flow_byts_s

flow_pkts_s

flow_iat_min

fwd_iat_tot

fwd_iat_min

bwd_pkts_s

init_fwd_win_byts

init_bwd_win_byts

fwd_seg_size_min

Extra Trees flow_duration

fwd_pkt_len_std

flow_pkts_s

fwd_iat_tot

bwd_pkts_s

ack_flag_cnt

init_fwd_win_byts

init_bwd_win_byts

fwd_seg_size_min

Gradient Boosting totlen_fwd_pkts

flow_iat_min

fwd_iat_tot

init_fwd_win_byts

init_bwd_win_byts

fwd_seg_size_min

Decision Tree totlen_fwd_pkts

bwd_pkt_len_mean

flow_pkts_s

fwd_iat_tot

init_fwd_win_byts

init_bwd_win_byts

fwd_seg_size_min

AdaBoost totlen_fwd_pkts

fwd_pkt_len_std

flow_iat_min

init_fwd_win_byts

init_bwd_win_byts

Logistic Regression totlen_bwd_pkts

flow_byts_s

 Yuri Prihantono, Kalamullah Ramli

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 2 (2022)

DOI: https://doi.org/10.29207/resti.v6i2.3989

Creative Commons Attribution 4.0 International License (CC BY 4.0)

327

Estimator/Classifier Algorithm Remained/Selected Features

flow_pkts_s

bwd_pkts_s

init_fwd_win_byts

init_bwd_win_byts

SGD flow_duration

totlen_fwd_pkts

totlen_bwd_pkts

flow_iat_std

flow_iat_min

fwd_iat_tot

fwd_iat_min

bwd_iat_min

3.3 Performance Comparison and Model Selection

The subset of features from the feature selection stage

is employed in the learning process with the same

classifier algorithm at this level. We go through a

learning process to classify two-class and multi-class

cases. The prediction results of each algorithm with the
Two-class classification are represented in Table 5 and

the Multi-class classification in Table 6.

Table 5. Performance Evaluation of Two-Class Classification Model

Model

(selected

features

subset)

Accur

acy

Precis

ion

Recall F1-

Score

Time Rank

XGBoost

(7 features)

0.990 0.990 0.990 0.990 0:14:04.79 1

Random

Forest

(12

features)

0.989 0.989 0.989 0.989 2:13:27.37 2

Extra Trees

(9 features)

0.988 0,988 0.988 0.988 0:52:41.07 3

Gradient

Boosting

(6 features)

0.988 0.988 0.988 0.987 0:32:18.17 4

Decision

Tree

(7 features)

0.987 0.987 0.987 0.987 0:03:23.38 5

AdaBoost

(5 features)

0.986 0.986 0.986 0.986 0:18:57.66 6

Logistic

Regression

(6 features)

0.853 0.858 0.853 0.808 0:00:49.11 7

SGD

(8 features)

0.831 0.854 0.831 0.754 0:00:39.17 8

Table 6. Performance Evaluation of Multi-class Classification

Model

Model

(selected

features

subset)

Accu

racy

Precis

ion

Recall F1-

Score

Time Rank

XGBoost

(7 features)

0.984 0.980 0.984 0.979 3:00:03.36 1

Random

Forest

(12 features)

0.983 0.977 0.983 0.979 2:13:00.73 2

Extra Trees

(9 features)

0.982 0.977 0.982 0.979 0:51:48.05 3

Gradient

Boosting

(6 features)

0.964 0.960 0.964 0.961 10:00:04.13 5

Decision

Tree

(7 features)

0.981 0.977 0.981 0.978 0:03:27.54 4

AdaBoost

(5 features)

0.839 0.715 0.839 0.711 0:26:15.11 6

Logistic

Regression

(6 features)

0.831 0.732 0.831 0.777 0:22:26.78 7

SGD

(8 features)

0.831 0.690 0.831 0.754 0:09:27.71 8

Based on the performance evaluation of Model-Based

Feature Selection as shown in Table 5 and Table 6, the

XGBoost algorithm shows the best algorithm

performance evaluation for the classification of Two-

class and Multi-class, with an accuracy value of 99

percent and a processing time of 14 minutes 4 seconds

79 milliseconds for Two-class classification and an

accuracy value of 98.4 percent, and a processing time

of 3 hours 3 seconds 36 milliseconds for Multi-class

classification. These results indicate a decrease in the
performance of the XGBoost Algorithm for Multi-class

classification. Further research is needed to analyze the

decline in performance and methods that can be used to

overcome these problems.

3.4 Development and Simulation

In the development of a Network Attack Detection and

Alerting System, there is a requirement not only to

detect network traffic in the form of normal or attack

but also to detect the types of attacks that occur. This is

the basis for selecting the XGBoost Model with Multi-

class classification to be applied to the system being

built.

In developing this system, the steps we took include the

following:

Step 1, On IDS Server, we create a shell script to

capture snort with tcpdump.log, extract dataset with

CICFlowMeter, do dataset prepocessing, create dataset

with selected subset features, predict the result with

machine learning model, and create result in CSV

format namely ml_snort.csv. Then, we configure

filebeat.yml to send ml_snort.csv to Apache Kafka.

Step 2, On Apache Kafka, we run the Kafka server, then

create topic snort on Kafka server, and verify the

received message

Step 3, On ELK Stack, we configure Logstash to set

input from Kafka based on a predefined topic.

Step 4, Finally, we configure ElastAlert to send attack

notifications to Telegram using the frequency rule type

alerts with a filter query "Result: Attack".

To test the success of system development, attack

simulations are carried out in the form of Network

Scanning, Website Scanning, and Denial-of-Service

Attack. The prediction results from the attack

simulation are visualized on the ELK Stack as shown in

Figure 5.

In Figure 5, the prediction results are obtained with

normal and attack classifications, with the types of

attacks in the form of DDOS attack-LOIC-UDP and

Infiltration. The prediction results with the attack

classification are sent to Telegram as an alert

notification of attacks on the network. Figure 6 shows

the network attack alert notification received by

Telegram.

 Yuri Prihantono, Kalamullah Ramli

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 2 (2022)

DOI: https://doi.org/10.29207/resti.v6i2.3989

Creative Commons Attribution 4.0 International License (CC BY 4.0)

328

Figure 5. Visualization of Attack Simulation Results on ELK Stack

The alert notification received by Telegram is the result

of an attack prediction, while the normal prediction

result is not sent to Telegram. Thus, the goal of

developing this system is achieved, namely being able

to overcome the problem of false positives and the

quantity of false alarms generated by IDS.

Figure 6. Network Attack Alert Notifications via Telegram

4. Conclusion

We successfully applied machine learning models in the

development of an Attack Detection and Alerting

System on the Network and performed attack detection

simulations. Based on the performance evaluation of

Model-Based Feature Selection, the XGBoost model

was chosen to be used in the development of the

proposed system. The simulation results show that the
system has succeeded in visualizing the results of attack

detection and sending notification alerts of the attack

via Telegram. However, there are still shortcomings

that must be followed up in further research related to

machine learning models that can be used with the

proposed approach. Some further research that can be

done includes the utilization of other machine learning

algorithms, the use of a more comprehensive dataset,

reducing misclassification for Multi-class, and

optimizing parameters.

Reference

[1] A. Tasneem, A. Kumar, and S. Sharma, “Intrusion Detection

Prevention System using SNORT,” International Journal of

Computer Applications, vol. 181, pp. 21–24, Mar. 2018, doi:

10.5120/ijca2018918280.
[2] Z. Yu and J. J. P. Tsai, Intrusion Detection A Machine Learning

Approach, vol. 3. London: Imperial College Press, 2011.

[3] Milan, H. Sardana, and K. Singh, “Reducing False Alarms in

Intrusion Detection Systems-A Survey,” International Research

Journal of Engineering and Technology (IRJET), vol. 05, no.

02, pp. 9–12, 2018.

 Yuri Prihantono, Kalamullah Ramli

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 2 (2022)

DOI: https://doi.org/10.29207/resti.v6i2.3989

Creative Commons Attribution 4.0 International License (CC BY 4.0)

329

[4] B. Wahyudi, K. Ramli, and H. Murfi, “Implementation and

Analysis of Combined Machine Learning Method for Intrusion

Detection System,” International Journal of Communication

Networks and Information Security, vol. 10, pp. 295–304, Mar.

2018.

[5] Q. R. S. Fitni and K. Ramli, “Implementation of Ensemble

Learning and Feature Selection for Performance Improvements

in Anomaly-Based Intrusion Detection Systems,” in 2020 IEEE

International Conference on Industry 4.0, Artificial

Intelligence, and Communications Technology (IAICT), Jul.

2020, pp. 118–124. doi: 10.1109/IAICT50021.2020.9172014.

[6] S. A. R. Shah, B. Issac, and S. M. Jacob, “Intelligent Intrusion

Detection System Through Combined and Optimized Machine

Learning,” International Journal of Computational Intelligence

and Applications, vol. 17, no. 02, p. 1850007, Jun. 2018, doi:

10.1142/S1469026818500074.

[7] A. Erlansari, F. F. Coastera, and A. Husamudin, “Early Intrusion

Detection System (IDS) using Snort and Telegram approach,”

SISFORMA, vol. 7, no. 1, pp. 21–27, Jun. 2020, doi:

10.24167/sisforma.v7i1.2629.

[8] I. Made Ari Sulistya and G. Made Arya Sasmita, “Network

Security Monitoring System on Snort with Bot Telegram as a

Notification,” International Journal of Computer Applications

Technology and Research, vol. 9, no. 2, pp. 59–64, 2020.

[9] R. AM and R. Manicka chezian, “Intrusion Detection System

Techniques and Tools: A Survey,” Scholars Journal of

Engineering and Technology (SJET), vol. 5, no. 3, pp. 122–130,

2017.

[10] J. A. Shaheen, “Apache Kafka: Real Time Implementation with

Kafka Architecture Review,” International Journal of

Advanced Science and Technology, vol. 109, pp. 35–42, Dec.

2017, doi: 10.14257/ijast.2017.109.04.

[11] T. V* and Dr. K. V, “Development of Kafka Messaging System

and its Performance Test Framework using Prometheus,”

International Journal of Recent Technology and Engineering

(IJRTE), vol. 9, no. 1, pp. 1622–1626, May 2020, doi:

10.35940/ijrte.A2516.059120.

[12] B. R. Hiraman, C. Viresh M., and K. Abhijeet C., “A Study of

Apache Kafka in Big Data Stream Processing,” in 2018

International Conference on Information , Communication,

Engineering and Technology (ICICET), Aug. 2018, pp. 1–3.

doi: 10.1109/ICICET.2018.8533771.

[13] P. Bavaskar, O. Kemker, and H. H. Syed, “A SURVEY ON:

‘LOG ANALYSIS WITH ELK STACK TOOL,’” SSRN

Electronic Journal, vol. 6, pp. 965–969, Mar. 2019.

[14] F. Ahmed, U. Jahangir, H. Rahim, K. Ali, and D.-S. Agha,

“Centralized Log Management Using Elasticsearch, Logstash

and Kibana,” in 2020 International Conference on Information

Science and Communication Technology (ICISCT), Feb. 2020,

pp. 1–7. doi: 10.1109/ICISCT49550.2020.9080053.

[15] D. v Uday and G. S. Mamatha, “An Analysis of Health System

Log Files using ELK Stack,” in 2019 4th International

Conference on Recent Trends on Electronics, Information,

Communication & Technology (RTEICT), May 2019, pp. 891–

894. doi: 10.1109/RTEICT46194.2019.9016706.

[16] Q. Long, ElastAlert Documentation, Release 0.0.1. 2019.

[17] J. Botha, C. van ’t Wout, and L. Leenen, A Comparison of Chat

Applications in Terms of Security and Privacy. 2019.

[18] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and A.

Hotho, “A survey of network-based intrusion detection data

sets,” Computers & Security, vol. 86, pp. 147–167, Sep. 2019,

doi: 10.1016/j.cose.2019.06.005.

[19] M. Labonne, Anomaly-based network intrusion detection using

machine learning. 2020.

[20] T. Akhtar et al., “Effective Voting Ensemble of Homogenous

Ensembling with Multiple Attribute-Selection Approaches for

Improved Identification of Thyroid Disorder,” Electronics

(Basel), vol. 10, no. 23, p. 3026, Dec. 2021, doi:

10.3390/electronics10233026.

[21] M. Huljanah, Z. Rustam, S. Utama, and T. Siswantining,

“Feature Selection using Random Forest Classifier for

Predicting Prostate Cancer,” IOP Conference Series: Materials

Science and Engineering, vol. 546, no. 5, p. 052031, Jun. 2019,

doi: 10.1088/1757-899X/546/5/052031.

[22] M. Sarhan, S. Layeghy, N. Moustafa, and M. Portmann,

“NetFlow Datasets for Machine Learning-Based Network

Intrusion Detection Systems,” 2021, pp. 117–135. doi:

10.1007/978-3-030-72802-1_9.

[23] Kurniabudi, D. Stiawan, Darmawijoyo, M. Y. bin Idris, A. M.

Bamhdi, and R. Budiarto, “CICIDS-2017 Dataset Feature

Analysis With Information Gain for Anomaly Detection,” IEEE

Access, vol. 8, pp. 132911–132921, 2020, doi:

10.1109/ACCESS.2020.3009843.

[24] M. Iqbal, M. M. Abid, M. N. Khalid, and A. Manzoor, “Review

of feature selection methods for text classification,”

International Journal of Advanced Computer Research, vol. 10,

no. 49, pp. 138–152, Jul. 2020, doi:

10.19101/IJACR.2020.1048037.

[25] M. Gong, “A Novel Performance Measure for Machine

Learning Classification,” International Journal of Managing

Information Technology, vol. 13, no. 1, pp. 11–19, Feb. 2021,

doi: 10.5121/ijmit.2021.13101.

[26] M. F. Fibrianda and A. Bhawiyuga, “ Analisis Perbandingan

Akurasi Deteksi Serangan Pada Jaringan Komputer Dengan

Metode Naïve Bayes Dan Support Vector Machine (SVM),”

Jurnal Pengembangan Teknologi Informasi dan Ilmu

Komputer, vol. 2, no. 9, pp. 3112–3123, 2018, [Online].

Available: https://j-ptiik.ub.ac.id/index.php/j-

ptiik/article/view/2559

[27] X. Gao, C. Shan, C. Hu, Z. Niu, and Z. Liu, “An Adaptive

Ensemble Machine Learning Model for Intrusion Detection,”

IEEE Access, vol. 7, pp. 82512–82521, 2019, doi:

10.1109/ACCESS.2019.2923640.

[28] M. Rabbani et al., “A Review on Machine Learning Approaches

for Network Malicious Behavior Detection in Emerging

Technologies,” Entropy, vol. 23, no. 5, p. 529, Apr. 2021, doi:

10.3390/e23050529.

[29] I. Sharafaldin, A. Habibi Lashkari, and A. A. Ghorbani,

“Toward Generating a New Intrusion Detection Dataset and

Intrusion Traffic Characterization,” in Proceedings of the 4th

International Conference on Information Systems Security and

Privacy, 2018, pp. 108–116. doi: 10.5220/0006639801080116.

[30] F. Inigo Solomon, “Securing Websites & Webapplications

Using Data Analytics,” in 2019 International Conference on

Computational Intelligence in Data Science (ICCIDS), Feb.

2019, pp. 1–4. doi: 10.1109/ICCIDS.2019.8862089.

[31] C. Stumpf, “A machine learning based approach towards

building an Intrusion Detection System,” Dec. 11, 2019.

https://github.com/cstub/ml-ids (accessed Apr. 18, 2022).

[32] R. Liang, “Feature selection using Python for classification

problems,” https://towardsdatascience.com/feature-selection-

using-python-for-classification-problem-b5f00a1c7028, Aug.

07, 2019.

[33] S. Galli, “Feature Selection for Machine Learning - Code

Repository,” https://github.com/solegalli/feature-selection-for-

machine-learning, Feb. 2018.

[34] P. Schober, C. Boer, and L. A. Schwarte, “Correlation

Coefficients,” Anesthesia & Analgesia, vol. 126, no. 5, pp.

1763–1768, May 2018, doi: 10.1213/ANE.0000000000002864.

