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Abstract  

The use of the Intrusion Detection Systems (IDS) still has unresolved problems, namely the lack of accuracy in attack detection, 

resulting in false-positive problems and many false alarms. Machine learning is one way that is often utilized to overcome 
challenges that arise during the implementation of IDS.. We present a system that uses a machine learning approach to detect 
network attacks and send attack alerts in this study. The CSE-CICIDS2018 Dataset and Model-Based Feature Selection 
technique are used to assess the performance of eight classifier algorithms in identifying network attacks in order to determine 
the best algorithm. The resulting XGBoost Model is chosen as the model that provides the highest performance results in this 
comparison of machine learning models, with an accuracy rate of 99 percent for two-class classification and 98.4 percent for 
multi-class classification. 
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1. Introduction  

Intrusion Detection System (IDS) is a security 

perimeter that monitor and analyze activities on 

computers and networks to detect anomalies or attacks 

[1]. For more than 20 years, several detection 

approaches have been developed, but there are still two 

fundamental difficulties that have not been fully solved: 

the quantity and quality of output (alarms or alerts) from 

IDS [2]. When it comes to the quantity of alerts, the 

problem is that the IDS frequently creates too many, 

which overwhelms the user. As a result, many alarms 

are unmanageable by the analyst/operator, resulting in 
the IDS not being used to its full potential. Then, in 

terms of alarm quality will decrease because normal 

network behavior continues to change and new attacks 

also keep appearing, as a result, IDS will lose alarms on 

actual attacks and report too many false alarms in the 

normal behavior [2], [3]. 

Machine learning is one way that is often utilized to 

overcome challenges that arise during the 

implementation of IDS. Several machine learning 

implementations on IDS were performed in previous 

studies to acquire the highest accuracy value on IDS. 
The performance of machine learning algorithms to 

predict attacks has been enhanced by using several 

techniques including dataset selection, feature 

selection, parameter optimization, and various other 

techniques. 

Research conducted by Bisyron Wahyudi, et al. 

produces an intrusion detection model that includes a 

machine learning approach and is implemented in a real 

network. They experimented with feature selection 

using a dataset from KDD. The testing findings 

produced the best classification accuracy without 

integrating the content features of KDD, and the 

developed model may operate well in a real network. 

Experiments on test data reveal that the SVM technique 

delivers the greatest results, with a 93.4 percent 
accuracy rate for two-class classification (normal and 

attack) and 86.8% for multi-class classification [4]. 

In other studies, Qusyairi Ridho et al. built the ensemble 

model with the CSE-CICIDS2018 dataset, decision 

trees, logistic regression, and gradient boosting 

selecting 23 of the 80 original dataset features using 

Spearman's rank correlation. The model they proposed 

has a final accuracy of 98.8% and a relatively low 

detection time [5]. 

Then, Syed Ali Raza Shah et al. also did a feasibility 

analysis of a machine learning technique that may be 
applied on Snort IDS by evaluating three different 

datasets using Weka. The best method is SVM, which 
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is followed by Decision Tree and Fuzzy logic. Later, a 

firefly and ACO-enhanced version of the SVM 

ensemble was implemented [6]. 

In this study, we conducted research to develop a 

Network Attack Detection and Alerting System by 

applying a machine learning approach to the system 

being built. In developing this system, we use various 

software, namely Snort IDS, Kafka, Elasticsearch 

Logstash Kibana (ELK Stack), ElastAlert, and 

Telegram. Each software has its function in developing 
the system proposed in this study. Snort is one of the 

IDS tools that serve to detect network attacks [7], by 

reading network packets, analyzing traffic with a 

predefined rule set, and generating alerts if there are 

matching rules [8]. This study uses Snort as an IDS tool 

because it is very easy to implement, and the ruleset can 

be customized as needed[9]. Apache Kafka is a 

platform messaging system that allows the consumption 

of large amounts of data or logs by applications [10] 

[11]. This study uses Apache Kafka as a messaging 

system to distribute logs generated by Snort, because of 
the scalability, high-volume, reliability, data 

transformations, and low latency [12]. ELK Stack is a 

combination of three applications i.e., Elasticsearch, 

Logstash, and Kibana that have their respective 

functions [13]. Elasticsearch is responsible for storing 

and collecting information centrally so that it can get the 

expected analysis results. Logstash is responsible for 

collecting all unstructured information and converting 

it into a structured format, and Kibana is a graphical 

interface (GUI) that ELK Stack users use to analyze 

logs[14]. This study uses ELK Stack as a Log 

Management System platform because ELK Stack is 
the most effective log monitoring tool [14] and it is an 

open system that can be the best and fast solution for 

developing a log analysis platform[15]. ElastAlert is a 

framework used to generate alerts obtained from 

Elasticsearch data. ElastAlert works with Elasticsearch 

with two-component types, namely rule types, and 

alerts. When the rule matches, the alert will be triggered 

[16]. Telegram is in charge of receiving alerts sent via 

the ElastAlert Framework. The basic considerations for 

using Telegram as a medium for sending alerts include 

security and convenience. In terms of security, based on 
research conducted by J. Botha et. al shows that 

Telegram is one of the Chat Applications that prioritizes 

Security and Privacy [17], and in terms of convenience, 

based on research conducted by I Made Ari Sulistya et. 

al, Telegram provides an API (Application Program 

Interface) that allows developers to create applications 

that are integrated with Telegram Messenger using Bots 

[8]. 

This study aims to develop a machine learning-based 

network attack detection and alerting system. In order 

to get a model that has the best performance to be 

applied to the system being built, we compare the 
performance of the eight selected machine learning 

algorithms. The dataset used in the learning process is 

the CSE-CICIDS2018 dataset, with the consideration 

that the dataset has comprehensive data and can 

represent network conditions in the real world [18], 

[19]. The application of the Model-Based Feature 

Selection method is also carried out to select important 

features according to the specified threshold parameter 

[20]. Feature selection is an important factor in 

improving machine learning model performance 

because it can remove unnecessary features, make the 
model clearer to understand, and reduce training and 

testing time [21]. The results of this study are expected 

to be a solution to overcome the problem of false 

positives and the number of false alarms on the IDS. 

2. Research Methods 

The methodology we use to conduct this research 

includes literature study related to previous research, 

dataset selection, feature selection, performance 

measure, machine learning model development, and 

architectural design for Network Attack Detection and 

Alerting System development. 

2.1 Dataset Selection 

Based on a survey conducted by [18], datasets are 

indispensable in conducting training and evaluating 

IDS performance. The dataset represents normal 

conditions and attacks in the real world. In the training 

and testing of IDS machine learning, a broad range of 

publically available datasets are used. To develop an 

effective machine learning model performance, the 

dataset must have adequate and useful information. The 

quality and quantity of datasets have a substantial 

impact on the accuracy of IDS, hence choosing an 

appropriate dataset is an important and unavoidable 
component of the process [22]. Maxime Labonne used 

the NSL-KDD, KDD Cup 99, CICIDS2017, and CSE-

CICIDS2018 datasets for his research [19]. According 

to the findings of this study, CICIDS2017 has a more 

reliable dataset for measuring IDS performance than 

KDD Cup 99 and NSL-KDD, while CSE-CICIDS2018 

has a more comprehensive dataset than CICIDS2017. 

The findings of this research were considered when 

CSE-CICIDS2018 was chosen as the dataset for our 

research. 

2.2 Feature Selection 

Datasets with a lot of features will increase the 

computational complexity, requiring more resources 

and time to analyze. The feature selection technique is 

one method used by researchers to address this issue 

[23]. Feature selection is an important factor in 

improving the performance of machine learning models 

because it can eliminate unimportant features, making 

the model clearer to comprehend and reducing training 

and testing time [21]. Feature selection approaches are 

commonly used to increase classifier algorithm 
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accuracy, lessen the influence of the "curse of 

dimensionality," and improve machine learning 

prediction performance by choosing the best ones from 

a larger set of features [24]. 

2.3 Performance Measure 

The confusion matrix is commonly used in evaluating 

the performance of the developed learning algorithms. 

According to [25], for binary classification, a 2x2 

matrix with actual class and prediction class is 

described in Figure 1. 

 

Figure 1. Confusion Matrix 

From Figure 1, in determining the classification there 

are formulas used [4], [25], [26], including:  

1) True Positive (TP): The positive value that is 

predicted to be correct, i.e., the Actual Class and 

Predictive Class values are both positive. 

2) True Negative (TN): The predicted negative values, 

i.e., the Actual Class and Predictive Class values are 

both negative. 

3) False Positive (FP): The positive result that is 
incorrectly predicted, i.e., the Actual Class value is 

negative while the Predictive Class value is positive. 

4) False Negative (FN): The negative value that is 

incorrectly predicted, i.e., the Actual Class value is 

positive while the Predictive Class value is negative. 

In the case of IDS, we can assume positive means an 

attack occurred, while negative means no attack. The 

metrics derived from the confusion-matrix table above 

[4], [25] are explained as follows: 

1) Accuracy: The most intuitive performance metric is 

the ratio of predicted right observations to total 

observations, which can be calculated using the 

formula 1: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                       (1) 

2) Recall: The predicted negative values, i.e., the 
Actual Class and Predictive Class values are both 

negative, as the following formula 2: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑃
=

𝑇𝑃

𝑇𝑃+𝐹𝑁
                  (2) 

3) Precision: The positive result that is incorrectly 

predicted, i.e., the Actual Class value is negative 

while the Predictive Class value is positive, as the 

following formula 3: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑃′
=

𝑇𝑃

𝑇𝑃+𝐹𝑃
                  (3) 

4) F1-Score: The negative value that is incorrectly 

predicted, i.e., the Actual Class value is positive 

while the Predictive Class value is negative, as the 

following formula 4: 

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
=

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
               (4) 

2.4. Model Development 

Algorithm selection is required for implementing 

Machine Learning-based IDS. Algorithms such as 
Decision Tree, Random Forest, SVM, and others can be 

utilized [27]. Some of these algorithms have their 

respective advantages and disadvantages, so research is 

needed to get a model that has the best performance 

[28]. The machine learning model development process 

that we did is represented in Figure 2. 

 

Figure 2. Machine Learning Model Development 

The steps of model development in our research are as 

follows: 

Step 1, Data Preprocessing: clean-up, split, and dataset 

analysis. 

Step 2, Feature Selection Selection of feature subsets 

from the dataset to be implemented in machine learning 

modeling. 

Step 3, Model Selection: The selection of the model that 

has the best algorithm performance, the stages include 

the following: 

Stage 1, Two-class Model: two-class classification is 

used to train and test datasets; 
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Stage 2, Multi-class Model: multi-class 

classification is used to train and test datasets; 

Stage 3, Result Comparison: compare algorithm 

performance to choose the best machine learning 

model; 

Stage 4, Model Selected: the best model from the 

Result Comparison is selected. 

2.4. System Architecture Design 

The next step is to implement the model into the 

Network Attack Detection and Alerting System 
architecture. In designing this architecture, we utilize 

some software, including Snort IDS, Apache Kafka, 

ELK Stack, ElastAlert, and Telegram. The software 

were combined to design the architecture of the 

Network Attack Detection and Alerting System as 

shown in Figure 3. 

 

Figure 3. Architectural Design Development of Network Attack 

Detection and Alerting Systems 

The following steps in the intrusion detection 

simulation are based on the Network Attack Detection 
and Alerting System Architecture: 

Step 1, Capture/sniff network traffic from the 

host/server and capture the log events as pcap files. 

Step 2, Extract network features from the pcap file in 

the CSE-CICIDS2018 dataset format using 

CICFlowMeter[29]. 

Step 3, Predict the intrusion detection findings using the 

Final Machine Learning Model obtained from Model 

Development.  

Step 4, Send the prediction results to Apache Kafka 

using Filebeat. Filebeat is a beat shipper used to send 
log files [30]. 

Step 5, Apache Kafka distributes logs sent from 

Filebeat to the Log Management System. 

Step 6, Log Management System (ELK Stack) performs 

network traffic classification on logs received as normal 

or attack and displays the results. 

Step 7, ElastAlert sends logs with attack classifications 

to Telegram using the ElastAlert framework. 

3.  Results and Discussions 

3.1 Data Prepocessing 

The CSE-CICIDS2018 dataset must be cleaned before 

it can be utilized for machine learning algorithm 

analysis and training. The following steps were applied 

to perform a clean-up of the dataset [31]: 

Step 1, Remove duplicate headers from the dataset that 

appear as rows. 

Step 2, Infinity and inf values are substituted for each 

other. 

Step 3, Remove whitespaces and non-word characters 

from the column's name. 

We analyzed the CSE-CICIDS2018 dataset after 

cleaning it up by classifying traffic into two groups, 

benign/normal and attack, as shown in Table 1, as well 

as classifying traffic into the attack type based on the 

attack label, as shown in Table 2. 

Table 1. Benign and Attack Numbers and Percentages of CSE-

CICIDS2018 Dataset 

Label Number Percentage 

Benign 13,484,708 83.07% 

Attack 2,748,235 16.93% 

Total 16,232,943 

Table 2. Attack Type and Percentages of CSE-CICIDS2018 Dataset 

Label Number Percentage 

Benign 13484708 83.0700% 

DDOS attack-HOIC 686012 4.2260% 

DDoS attacks-LOIC-HTTP 576191 3.5495% 

DoS attacks-Hulk 461912 2.8455% 

Bot 286191 1.7630% 

FTP-BruteForce 193360 1.1912% 

SSH-Bruteforce 187589 1.1556% 

Infiltration 161934 0.9976% 

DoS attacks-SlowHTTPTest 139890 0.8618% 

DoS attacks-GoldenEye 41508 0.2557% 

DoS attacks-Slowloris 10990 0.0677% 

DDOS attack-LOIC-UDP 1730 0.0107% 

Brute Force –Web 611 0.0038% 

Brute Force -XSS 230 0.0014% 

SQL Injection 87 0.0005% 

3.2 Model-Based Feature Selection 

Model-Based Feature Selection evaluates all features at 

once, to identify relationships [32]. At this stage, the 

feature selection steps carried out include the following: 

Step 1, Remove Constant Features: Constant Feature is 

a feature that displays the same value, one value for all 

dataset observations. This feature does not provide 

information that would allow machine learning models 

to distinguish or predict targets. Removing Constant 
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Features is done by removing zero-variance features or 

removing features that have a standard deviation of 0 

[33]. 

Step 2, Remove Quasi-Constant Features: Quasi-

Constant Feature is a feature that displays the same 

value for most of the dataset observations. In general, 

this feature provides very little information that allows 

machine learning models to distinguish or predict 

targets. Removing Quasi-Constant Features is done by 

removing low-variance features or removing features 

that have a VarianceThreshold of 0.01 [33] 

Step 3, Spearman’s Rank: The Spearman Correlation 

can be used to determine the correlation between 

features. The Spearman Correlation scale ranges from -

1 to +1, where 0 indicates no correlation, and the 

correlation gets stronger as it approaches the absolute 

value of 1 [34]. To identify correlations between 

features, in implementing Spearman's Rank 

Correlation, it is necessary to select the appropriate 

threshold. Table 3 shows the interpretation of the 

Correlation Coefficient of absolute quantities that can 
be used as a reference for determining the threshold 

[34]. 

Table 3. Absolute Magnitude of The Observed Correlation 

Coefficient and Its Interpretations 

Absolute Magnitude Interpretation 

0.00-0.10 Negligible correlation 

0.10-0.39 Low correlation 

0.40-0.69 Medium correlation 

0.70-0.89 High correlation 

0.90-1.00 Very high correlation 

At this stage, features that have a very high correlation 

with each other will be removed, because these features 

will not provide predictions but only cause noise [31]. 

Based on the interpretation obtained from Table 3, this 

study uses a threshold value of 1 to identify features that 

have a very high correlation. Figure 4 provides a 

heatmap that visualizes the correlation between distinct 

pairs of features after deleting the very highly correlated 

features. Figure 4 shows that feature pairs with a higher 
correlation are represented by a darker color spectrum, 

whereas feature pairs with a lower correlation are 

represented by a lighter color spectrum. 

Step 4, Feature Selection using SelectFromModel: 

SelectFromModel is a feature selection method that 

removes features if the relevant coefficients or 

important features are less than the parameter threshold 

[20]. This strategy is applied to estimators with 

significant characteristics or coefficients [21]. Eight 

classifier algorithms are implemented as estimators in 

this method, including XGBoost, Random Forest, Extra 
Trees, Gradient Boosting, Decision Tree, AdaBoost, 

Logistic Regression, and Stochastic Gradient Descent 

(SGD). The eight classifier algorithms are implemented 

as models in feature selection using default parameters. 

Table 4 shows the selected features from the application 

of Model-Based Feature Selection. 

 

Figure 4. Correlation Heatmap after the removal of very 

highly correlated features 

Table 4. Selected Features of Several Classifier Algorithms 

Estimator/Classifier Algorithm Remained/Selected Features 

XGBoost totlen_fwd_pkts 

fwd_pkt_len_mean 

flow_pkts_s 

fwd_iat_tot 

init_fwd_win_byts 

init_bwd_win_byts 

fwd_seg_size_min 

Random Forest flow_duration 

totlen_fwd_pkts 

fwd_pkt_len_mean 

flow_byts_s 

flow_pkts_s 

flow_iat_min 

fwd_iat_tot 

fwd_iat_min 

bwd_pkts_s 

init_fwd_win_byts 

init_bwd_win_byts 

fwd_seg_size_min 

Extra Trees flow_duration 

fwd_pkt_len_std 

flow_pkts_s 

fwd_iat_tot 

bwd_pkts_s 

ack_flag_cnt 

init_fwd_win_byts 

init_bwd_win_byts 

fwd_seg_size_min 

Gradient Boosting totlen_fwd_pkts 

flow_iat_min 

fwd_iat_tot 

init_fwd_win_byts 

init_bwd_win_byts 

fwd_seg_size_min 

Decision Tree totlen_fwd_pkts 

bwd_pkt_len_mean 

flow_pkts_s 

fwd_iat_tot 

init_fwd_win_byts 

init_bwd_win_byts 

fwd_seg_size_min 

AdaBoost totlen_fwd_pkts 

fwd_pkt_len_std 

flow_iat_min 

init_fwd_win_byts 

init_bwd_win_byts 

Logistic Regression totlen_bwd_pkts 

flow_byts_s 
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Estimator/Classifier Algorithm Remained/Selected Features 

flow_pkts_s 

bwd_pkts_s 

init_fwd_win_byts 

init_bwd_win_byts 

SGD flow_duration 

totlen_fwd_pkts 

totlen_bwd_pkts 

flow_iat_std 

flow_iat_min 

fwd_iat_tot 

fwd_iat_min 

bwd_iat_min 

3.3 Performance Comparison and Model Selection 

The subset of features from the feature selection stage 

is employed in the learning process with the same 

classifier algorithm at this level. We go through a 

learning process to classify two-class and multi-class 

cases. The prediction results of each algorithm with the 
Two-class classification are represented in Table 5 and 

the Multi-class classification in Table 6. 

Table 5. Performance Evaluation of Two-Class Classification Model 

Model 

(selected 

features 

subset) 

Accur

acy 

Precis

ion 

Recall F1-

Score 

Time Rank 

XGBoost 

(7 features) 

0.990 0.990 0.990 0.990 0:14:04.79 1 

Random 

Forest 

(12 

features) 

0.989 0.989 0.989 0.989 2:13:27.37 2 

Extra Trees 

(9 features) 

0.988 0,988 0.988 0.988 0:52:41.07 3 

Gradient 

Boosting 

(6 features) 

0.988 0.988 0.988 0.987 0:32:18.17 4 

Decision 

Tree 

(7 features) 

0.987 0.987 0.987 0.987 0:03:23.38 5 

AdaBoost 

(5 features) 

0.986 0.986 0.986 0.986 0:18:57.66 6 

Logistic 

Regression 

(6 features) 

0.853 0.858 0.853 0.808 0:00:49.11 7 

SGD 

(8 features) 

0.831 0.854 0.831 0.754 0:00:39.17 8 

 

Table 6. Performance Evaluation of Multi-class Classification 

Model 

Model 

(selected 

features 

subset) 

Accu

racy 

Precis

ion 

Recall F1-

Score 

Time Rank 

XGBoost 

(7 features) 

0.984 0.980 0.984 0.979 3:00:03.36 1 

Random 

Forest 

(12 features) 

0.983 0.977 0.983 0.979 2:13:00.73 2 

Extra Trees 

(9 features) 

0.982 0.977 0.982 0.979 0:51:48.05 3 

Gradient 

Boosting 

(6 features) 

0.964 0.960 0.964 0.961 10:00:04.13 5 

Decision 

Tree 

(7 features) 

0.981 0.977 0.981 0.978 0:03:27.54 4 

AdaBoost 

(5 features) 

0.839 0.715 0.839 0.711 0:26:15.11 6 

Logistic 

Regression 

(6 features) 

0.831 0.732 0.831 0.777 0:22:26.78 7 

SGD 

(8 features) 

0.831 0.690 0.831 0.754 0:09:27.71 8 

Based on the performance evaluation of Model-Based 

Feature Selection as shown in Table 5 and Table 6, the 

XGBoost algorithm shows the best algorithm 

performance evaluation for the classification of Two-

class and Multi-class, with an accuracy value of 99 

percent and a processing time of 14 minutes 4 seconds 

79 milliseconds for Two-class classification and an 

accuracy value of 98.4 percent, and a processing time 

of 3 hours 3 seconds 36 milliseconds for Multi-class 

classification. These results indicate a decrease in the 
performance of the XGBoost Algorithm for Multi-class 

classification. Further research is needed to analyze the 

decline in performance and methods that can be used to 

overcome these problems. 

3.4 Development and Simulation 

In the development of a Network Attack Detection and 

Alerting System, there is a requirement not only to 

detect network traffic in the form of normal or attack 

but also to detect the types of attacks that occur. This is 

the basis for selecting the XGBoost Model with Multi-

class classification to be applied to the system being 

built. 

In developing this system, the steps we took include the 

following: 

Step 1, On IDS Server, we create a shell script to 

capture snort with tcpdump.log, extract dataset with 

CICFlowMeter, do dataset prepocessing, create dataset 

with selected subset features, predict the result with 

machine learning model, and create result in CSV 

format namely ml_snort.csv. Then, we configure 

filebeat.yml to send ml_snort.csv to Apache Kafka. 

Step 2, On Apache Kafka, we run the Kafka server, then 

create topic snort on Kafka server, and verify the 

received message 

Step 3, On ELK Stack, we configure Logstash to set 

input from Kafka based on a predefined topic. 

Step 4, Finally, we configure ElastAlert to send attack 

notifications to Telegram using the frequency rule type 

alerts with a filter query "Result: Attack". 

To test the success of system development, attack 

simulations are carried out in the form of Network 

Scanning, Website Scanning, and Denial-of-Service 

Attack. The prediction results from the attack 

simulation are visualized on the ELK Stack as shown in 

Figure 5. 

In Figure 5, the prediction results are obtained with 

normal and attack classifications, with the types of 

attacks in the form of DDOS attack-LOIC-UDP and 

Infiltration. The prediction results with the attack 

classification are sent to Telegram as an alert 

notification of attacks on the network. Figure 6 shows 

the network attack alert notification received by 

Telegram. 
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Figure 5. Visualization of Attack Simulation Results on ELK Stack 

The alert notification received by Telegram is the result 

of an attack prediction, while the normal prediction 

result is not sent to Telegram. Thus, the goal of 

developing this system is achieved, namely being able 

to overcome the problem of false positives and the 

quantity of false alarms generated by IDS. 

 

 

 

Figure 6. Network Attack Alert Notifications via Telegram 

4.  Conclusion 

We successfully applied machine learning models in the 

development of an Attack Detection and Alerting 

System on the Network and performed attack detection 

simulations.  Based on the performance evaluation of 

Model-Based Feature Selection, the XGBoost model 

was chosen to be used in the development of the 

proposed system. The simulation results show that the 
system has succeeded in visualizing the results of attack 

detection and sending notification alerts of the attack 

via Telegram. However, there are still shortcomings 

that must be followed up in further research related to 

machine learning models that can be used with the 

proposed approach. Some further research that can be 

done includes the utilization of other machine learning 

algorithms, the use of a more comprehensive dataset, 

reducing misclassification for Multi-class, and 

optimizing parameters. 
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